Activated carbon found in the filters for HAKKO Fume Extraction Systems and Smoke Absorbers can adsorb a number of substances. The following capacity index lists substances by both chemical and common name. It is a general list of the most common compounds found in the workplace. The efficiency and capacity of activated carbon that is found in the HAKKO Fume Extraction Systems and Smoke Absorbers to adsorb these substances varies with the concentration found in the airflow that passes through the filtration media with the activated carbon. Other factors that can affect the adsorption of these substances by activated carbon are relative humidity and temperature. The Capacity Index (CI) numbers are for reference only and may vary under local conditions. Each substances is rated from 1 to 4 as follows: - 4. High Adsorption Capacity Substances are adsorbed very efficiently. Typically, one pound of activated carbon adsorbs approximately 20% to 50% of its own weight (average of approximately 33-1/3%). This category includes most substances that cause odor. - 3. Satisfactory Adsorption Capacity Substances are adsorbed well, but not as efficient as substances with a Capacity Index of 4. One pound of activated carbon adsorbs about 10% to 25% of its weight (average of approximately 16.7%). - Moderate Adsorption Capacity Substances are not highly adsorbed but might be adsorbed sufficiently to give acceptable results under the particular operating conditions and concentration levels. These will require individual validation through local evaluation. - 1. Poor Adsorption Capacity Substances that are not adsorbed by activated carbon are included in this category. NOTE: Substances that are identified with an asterisk (*) are not adequately adsorbed by standard activated carbon however specially treated carbon can increase adsorption efficiency. Further evaluation and possible custom filters may be required. | Acetaldehyde* | 2 | Decane | 4 | Iodoform | 4 | Pentylene* | 3 | |---------------|---|------------------------|---|-----------|---|------------|---| | Acetic Acid | 4 | Decaying
Substances | 4 | Irritants | 4 | Penlyne* | 3 | | Acetic
Anhydride | 4 | Deodorants | 4 | Isophorone | 4 F | erchloroethylen | e 4 | |------------------------|---------|------------------------------------|---------|------------------------------|------|---------------------|------| | Acetone | 3 | Detergents | 4 | Isoprene* | 3 Pe | rfumes,Cosmeti | cs 4 | | Acetylene* | 1 | Dibromethane 4 | 4 | Isopropyl
Acetate | 4 | Perspirations | 4 | | Acrolain* | | Dichlorobenzene
lorodifluoromet | | Isopropyl
Alcohol | 4 | Persistent
Odors | 4 | | Acrylic
Acid | 4 | Dichloroethane | 4 | Isopropyl
Ether | 4 | Pet Odors | 4 | | Acrylonitrile | 4 | Dichloroethylene | 4 | Kerosene | 4 | Phenol | 4 | | Adhesives | 4 | Dichloroethyl
Ether | 4 | Kitchen
Odors | 4 | Phoagene | 3 | | Air-Wick | 4 Dichl | oromonofluorme | thane 3 | Lactic Acid | 4 | Pitch | 4 | | Alcoholic
Beverages | 4 D | ichloronitroethai | ne 4 | Lingering
Odors | 4 | Plastics | 4 | | Amines* | 2 | Dichloropropane | 4 | Liquid Fuels | 4 | Pollen | 3 | | Ammonia* | 2 Dich | lorotetrafluoroet | hane 4 | Liquid
Odors | 4 | Popcorn &
Candy | 4 | | Amyl
Acetate | 4 | Diesel
Fumes &
Odors | 4 | Lubricating Oils and Greases | 4 | Poultry
Odors | 4 | | Amyl
Alcohol | 4 | Diethylamine* | 3 | Lysol | 4 | Propane | 2 | |-------------------------|---|--------------------|---|--------------------|-----|-------------------------|-----| | Amyl Ether | 4 | Diethyl
Ketone | 4 | Masking
Agents | 4 I | roplonaldehyde | * 3 | | Animal
Odors | 3 | Dimethylaniline | 4 | Medicinal
Odors | 4 | Proplonic
Acid | 4 | | Anesthetics | 3 | Dimethylsulfate | 4 | Melons | 4 | Propyl
Acetate | 4 | | Aniline | 4 | Dioxane | 4 | Menthol | 4 | Propyl
Alcohol | 4 | | Antiseptics | 4 | Dipropyl
Ketone | 4 | Mercaptans | 4 | Propyl
Chloride | 4 | | Asphalt
Fumes | 4 | Disinfectants | 4 | Mesityl
Oxide | 4 | Propyl Ether | 4 | | Automobile
Exhaust | 3 | Embalming
Odors | 4 | Methane | 1 | Propyl
Mercaptan | 4 | | Bathroom
Odors | 4 | Ethane | 1 | Methyl
Acetate | 3 | Propylene* | 2 | | Bleaching
Solutions* | 3 | Ether | 3 | Methyl
Acrylate | 4 | Propyne* | 2 | | Body Odors | 4 | Ethyl
Acetate | 4 | Methyl
Alcohol | 3 | Purifying
Substances | 3 | | Borane | 3 | Ethyl | 4 | Methyl | 3 | Putrescine | 4 | | | | Acrylic | | Bromide | | | | |---------------------|---|--------------------|---|---------------------------------|---|-----------------------|---| | Bromine | 4 | Ethyl
Alcohol | 4 | Methyl Buty
Ketone | 4 | Pyridine | 4 | | Burned
Flesh | 4 | Ethyl
Amine* | 3 | Methyl
Cellosolve | 4 | Radiation
Products | 2 | | Burned
Food | 4 | Ethyl
Benzene | 4 | Methyl
Cellosolve
Acetate | 4 | Rancid Oils | 4 | | Burning Fat | 4 | Ethyl
Bromide | 4 | Methyl
Chloride | 3 | Resins | 4 | | Butadiene | 3 | Ethyl
Chloride | 3 | Methyl
Chloroform | 3 | Reodorants | 4 | | Butane | 2 | Ethyl Ether | 3 | Methyl
Ether | 3 | Ripening
Fruits | 4 | | Butonone | 4 | Ethyl
Formate | 3 | Methyl
Ethyl
Ketone | 4 | Rubber | 4 | | Butyl
Acetate | 4 | Ethyl
Mercaptan | 3 | Methyl
Formate | 3 | Sauerkraut | 4 | | Butyl
Alcohol | 4 | Ethyl
Silicate | 4 | Methyl
Isobutyl
Ketone | 4 | Sewer Odors | 4 | | Butyl
Cellosolve | 4 | Ethylene* | 1 | Methyl
Mercaptan | 4 | Skatole | 4 | | Butyl
Chloride | 4 | Ethylene
Chlorhydrin | 4 M | ethylcyclohexar | ie 4 | Slaughtering
Odors | 3 | |---------------------|-------|----------------------------|---------|-----------------------|----------|-----------------------|---| | Butyl Ether | 4 | Ethylene
Dichloride | 4 M | ethylcyclohexan | ol 4 | Smog | 4 | | Butylene* | 2 | Ethylene
Oxide | 3 M | ethylcyclohexor | ie 4 | Soaps | 4 | | Butyne* | 2 | Essential
Oils | 4 | Methylene
Chloride | 4 | Smoke | 4 | | Butyraldehyde* | 3 | Eucalyptole | 4 | Mildew | 3 | Solvents | 3 | | Butyric
Acid | 4 | Exhaust
Fumes | 3 | Mixed
Odors | 4 | Sour Milks | 4 | | Camphor | 4 | Fertilizer | 4 | Mold | 3 | Spilled
Beverages | 4 | | Cancer Odor | 4 | Film
Processing
Odor | 3 M | onochlorobenze | ne 4 | Spoiled
Foods | 4 | | Caprylic
Acid | 4 | Fish Odors | 4 Monot | luorotrichlorom | ethane 4 | Stale Odors | 4 | | Carbolic
Acid | 4 | Floral
Scents | 4 | Moth Balls | 4 | Stoddard
Solvent | 4 | | Carbon
Disulfide | 4 Flu | orotrichlorometh | ane 3 | Naptha
(Coal Tar) | 4 | Stuffiness | 4 | | Carbon | 1 | Food | 4 | Naptha | 4 | Styrene | 4 | | Dioxide* | | Aromas | | (Petroleum) | | Monomer | | |-------------------------|------|---------------|---|----------------------|-----|-------------------------------|-----| | Carbon
Monoxide | 1 | Formaldehyde* | 2 | Napthalene | 4 | Sulfur
Dioxide* | 2 | | Carbon
Tetrachloride | 4 | Formic Acid | 3 | Nicotine | 4 | Sulfur
Trioxide* | 3 | | Cellosolve | 4 | Fuel Gases | 2 | Nitric Acid* | 3 | Sulfuric
Acid | 4 | | Cellosolve
Acetate | 4 | Fumes | 3 | Nitro
Benzenes | 4 | Tar | 4 | | Charred
Materials | 4 | Gangrene | 4 | Nitroethane | 4 | Tarnishing
Gases* | 3 | | Cheese | 4 | Garlic | 4 | Nitrogen
Dioxide* | 2 7 | etrachloroethan | e 4 | | Chlorine | 3 | Gasoline | 4 | Nitroglycerine | 4 | Theatrical
Makeup
Odors | 4 | | Chlorobenzene | 4 | Heptane | 4 | Nitromethane | 4 | Tobacco
Smoke
Odors | 4 | | Chlorobutadiene | 4 | Heptylene | 4 | Nitropropane | 4 | Toilet Odors | 4 | | Chloroform | 4 | Hexane | 3 | Nonane | 4 | Toluene | 4 | | hloronitropropaı | ie 4 | Hexylene* | 3 | Octalene | 4 | Toludine | 4 | | Chloropicrine | 4 | Hexyne* | 3 | Octane | 4 | Frichlorethylene | 4 | |-----------------------------|---|-----------------------|------|----------------------------|------|-------------------------|---| | Cigarette
Smoke
Odors | 4 | Hospital
Odors | 4 | Odorants | 4 | Trichloroethane | 4 | | Citrus &
Other Fruits | 4 | Household
Odors | 4 | Onions | 4 | Turpentine | 4 | | Cleaning
Compounds | 4 | Hydrogen | 1 | Organic
Chemicals | 4 | Urea | 4 | | Combustion
Odors | 3 | Hydrogen
Bromide* | 2 | Ozone | 4 | Uric Acid | 4 | | Cooking
Odors | 4 | Hydrogen
Chloride* | 2 | Packing
House
Odors | 4 | Valeric Acid | 4 | | Corrosive
Gases | 3 | Hydrogen
Cyanide* | 2 | Paint & Redecorating Odors | 4 | Valericaldehyde | 4 | | Creosole | 4 | Hydrogen
Fluoride* | 2 | Palmitic
Acid | 4 | Varnish
Fumes | 4 | | Cresol | 4 | Hydrogen
Iodide* | 3 | Paper
Deteriorations | 4 | Vinegar | 4 | | Crolonaldehyde | 4 | Hydrogen
Salenide* | 2 Pa | radichlorobenze | ne 4 | Vinyl
Chloride | 3 | | Cyclohexane | 4 | Hydrogen
Sulfine* | 3 | Paste &
Glue | 4 | Waste
Products | 3 | | Cyclohexanol | 4 | Incense | 4 | Pentane | 3 | Wood
Alcohol | 3 | |---------------|---|---------|---|-----------|---|-----------------|---| | Cyclohexanone | 4 | Indole | 4 | Pentanone | 4 | Xylene | 4 | | Cholohexene | 4 | Iodine | 4 | | | | | #### Disclaimer: The data provided in the Activated Carbon Capacity Index lists the relative effectiveness of activated carbon on the various substances listed. It does not imply nor guarantee that the construction materials for HAKKO products and filters are impervious to all the substances shown. Life expectancy of any purification system is dependent on the concentration of the contaminants ingested into the system. It is reasonable to expect that the filter service life will be shorter as the concentration of contaminants increases. In most real-world cases, the air stream that is ingested into a filtration system contains more than just one substances and is almost always composed of multiple other gases as well as solid particles such as soldering flux smoke. #### HakkoUSA Knowledge Base https://kb.hakkousa.com/Knowledgebase/10644/What-odors-andor-substances-can...